FLORA AND FAUNA 2022 Vol. 28 No. 2 PP 284-294 https://doi.org/10.33451/florafauna.v28i2pp284-294 ISSN 2456 - 9364 (Online) ISSN 0971 - 6920 (Print)

Studies on avian diversity of Shri Krishna University campus, Chhatarpur, Madhya Pradesh, India

Priyanka Shivhare^{1,} *Niket Mishra² and Devendra Singh³

¹Department of Zoology,

²Department of Environmental Science, Shri Krishna University, CHHATARPUR (M.P.) INDIA

³Institute of Environment and Development Studies,

Bundelkhand University, JHANSI (U.P.) INDIA

*Corresponding Author

E-mail: mishraniket28@gmail.com

Received: 11.08.2022; Revised: 25.08.2022; Accepted: 08.09.2022

ABSTRACT

An ecosystem's health is greatly influenced by the diversity of its Avifauna, particularly in anthropogenically altered landscapes. The current study was conducted at Shri Krishna University, Chhatarpur, Madhya Pradesh, which constitutes a micro habitat next to National Highway-86. The purpose of this study was to determine the Avian diversity of the Shri Krishna University Campus in Chhatarpur, from February 2022 to July 2022. During the study period, a total of 77 bird species from 35 families were identified. The research revealed seven distinct feeding patterns among the listed species. In order to determine species which predominate in a given area, the Relative Diversity Index of the multiple species was determined. The current result revealed that Muscicapidae family was most diverse family in this campus. The SKU campus bird checklist was created for the first time ever as part of this project, which also documented a representative sample of the University's Avian variety.

Figures : 04References : 20Tables : 02KEY WORDS : Avian diversity, Bird diversity, Feeding habit, Relative Diversity Index (RDi), Residential status.

Introduction

The animal taxa with the greatest geographic diversity, birds may be found on all seven continents. They exhibit a wide range of distribution patterns and frequently choose to reside in diverse settings. Birds typically settle in areas with the resources they need to survive while carrying out a variety of functional tasks and contributing significantly to the health of different ecosystems^{13,18,19}. The species makeup of bird communities varies across wide geographic areas and is influenced by the resources that are available. Predictions regarding the ecological health and potential variations in ecosystem functions are made possible by characteristic bird assemblages in landscapes^{13, 19}.

Humans have always been fascinated by Birds because of how they appear and are found in various ecosystems. These include pollination, pest control, seed distribution, scavenging, nutrient deposition, *etc.* They carry out essential ecological services^{4, 20}. The best environmental change monitors are birds. The most popular method for examining the long-term effects of habitat fragmentation has been to look at changes in their population, behavioural habits, and reproductive capacity⁷. Birds exhibit a wide range of distribution patterns, and "frequently opt to live in varied surroundings," according

to one study^{11, 12}. The species composition in bird assemblages is influenced by resource availability, topographical differences, environmental conditions, anthropogenic activities, including urbanisation of natural habitats, over vast geographic areas^{8, 12}.

Most often, diversity is utilised as a sign of an ecological system that is stable and sustainable. Due to habitat degradation and human disturbances, the variety of the avifauna has been declining recently. The destruction of natural habitats at random, including nesting trees and foraging habitats, for the purpose of commercial exploitation of forests and lands, is the main cause of the decline in bird foraging environment and nesting sites.⁵. As a result, periodic monitoring of the bird biodiversity in this area is necessary. Several states in the Indian Himalayan region are well known for their extensive vegetation. Studies on the avian community are useful for developing conservation measures in regions with significant human pressure and for monitoring urban ecosystems.

The creation of a species list is essential to understand the bird species present in a given location because it demonstrates species diversity. Numerous research on bird variety in nature reserves and other wildlife ecosystems have been published; however, there are lack

		TABLE-1 : List	of birds recorded in Shri Krish	hna Univers	sity campus		
S.No.	Family	Scientific Name	Common English Name	IUCN status	Residential status	Relative abundance	Feeding habits
1.	Accipitridae	Milvus migrans	Black Kite	ГC	R	C	Carnivorous
2.		Spilornis cheela	Crested serpent Eagle	LC	R	C	Carnivorous
3.		Aquila rapax	Tawny Eagle	٧U	R	nc	Carnivorous
4.		Neophron percnopterus	Egyptian Vulture	Ш	R	nc	Carnivorous
5.		Accipiter badius	Shikra	LC	R	C	Carnivorous
6.		Butastur teesa	White-eyed Buzzard	LC	R	C	Carnivorous
7.	Alaudidae	Mirafra erythroptera	Indian Bushlark	LC	R	nc	Omnivorous
8.		Eremopterix griseus	Ashy-crowned Sparrow Lark	LC	R	C	Insectivorous
9.	Alcedinidae	Alcedo atthis	Common Kingfisher	ГC	R	nc	Carnivorous
10.		Ceryle rudis	Pied Kingfisher	ГС	R	nc	Carnivorous
11.		Halcyon smyrnensis	W hite-throated Kingfisher	LC	R	С	Carnivorous
12.	Apodidae	Apus affinis	Little Swift	LC	R	Ra	Insectivorous
13.	Ardeidae	Ardea cinerea	Grey Heron	LC	R	nc	Carnivorous
14.		Egretta garzetta	Little Egret	LC	R	VC	Carnivorous
15.		Bubulcus ibis	Cattle Egret	LC	R	VC	Carnivorous

Studies on avian diversity of Shri Krishna University campus, Chhatarpur, Madhya Pradesh, India

S.No.	Family	Scientific Name	Common English Name	IUCN status	Residential status	Relative abundance	Feeding habits
16.		Mesophoyx intermedia	Intermediate Egret	NE	Я	nc	Carnivorous
17.		Ardeola grayii	Indian Pond Heron	ГС	R	VC	Carnivorous
18.		Ardea purpurea	Purple Heron	ГC	R	nc	Carnivorous
19.	Bucerotidae	Ocyceros birostris	Indian Grey Hornbill	ГС	Я	Ra	Omnivorous
20.	Vangidae	Tephrodornis pondicerianus	Common Woodshrike	ГC	R	nc	Insectivorous
21.	Campephagidae	Pericrocotus cinnamomeus	Small Minivet	ГC	R	U	Insectivorous
22.	Capitonidae	Megalaima haemacephala	Coppersmith Barbet	ГC	R	nc	Omnivorous
23.	Caprimulgidae	Caprimulgus asiaticus	Indian Nightjar	ГC	R	Ra	Insectivorous
24.	Charadriidae	Vanellus indicus	Red-wattled Lapwing	ГC	R	VC	Omnivorous
25.	Columbidae	Columba livia	Common Pigeon	ГC	R	U	Granivorous
26.		Stigmatopelia chinensis	Spotted Dove	ГC	R	Ra	Granivorous
27.		Stigmatopelia senegalensis	Laughing dove	ГC	R	VC	Granivorous
28.		Streptopelia decaocto	Eurasian Collared Dove	ГC	R	VC	Granivorous
29.	Coraciidae	Coracias benghalensis	Indian Roller	ГC	Я	nc	Carnivorous
30.	Corvidae	Corvus splendens	House Crow	ГC	Я	U	Carnivorous
31.		Corvus macrorhynchos	Indian Jungle Crow	ГС	К	U	Carnivorous

Priyanka Shivhare, Niket Mishra and Devendra Singh

S.No.	Family	Scientific Name	Common English Name	IUCN status	Residential status	Relative abundance	Feeding habits
32.		Dendrocitta vagabunda	Rufous Treepie	ГC	Я	C	Frugivorous
33.		Dendrocitta formosae	Grey Treepie	ГC	Я	U	Frugivorous
34.	Cuculidae	Eudynamys scolopacea	Asian Koel	ГC	Я	U	Omnivorous
35.		Cuculus canorus	Eurasian Cuckoo	ГC	ΡV	nc	Insectivorous
36.		Centropus sinensis	Greater Coucal	ГC	PV	nc	Insectivorous
37.	Dicruridae	Dicrurus macrocercus	Black Drongo	ГС	Я	VC	Insectivorous
38.	Hirundinidae	Cecropis daurica	Red-rumped Swallow	ГС	ΡV	C	Insectivorous
39.	Aegithinidae	Aegithina tiphia	Common lora	ГС	Я	C	Insectivorous
40.	Laniidae	Lanius schach	Long-tailed shrike	ГС	R	VC	Carnivorous
41.		Lanius vittatus	Bay-backed Shrike	ГС	Я	C	Insectivorous
42.		Lanius excubitor	Great Grey shrike	ГС	ΡV	Ra	Carnivorous
43.	Meropidae	Merops orientalis	Green Bee-eater	ГC	Я	U	Insectivorous
44.	Motacillidae	Motacilla flava	Yellow Wagtail	ГC	Ŵ	nc	Insectivorous
45.		Motacilla citreola	Citrine Wagtail	ГC	Ŵ	nc	Insectivorous
46.		Anthus rufulus	Paddyfield pipit	ГC	R	VC	Insectivorous
47.	Muscicapidae	Saxicoloides fulicata	Indian Robin	ГС	Я	U	Insectivorous

Studies on avian diversity of Shri Krishna University campus, Chhatarpur, Madhya Pradesh, India

S.No.	Family	Scientific Name	Common English Name	IUCN status	Residential status	Relative abundance	Feeding habits
48.		Copsychus saularis	Oriental Magpie Robin	ГС	R	С	Insectivorous
49.		Turdoides caudate	Common Babbler	ГС	R	Ra	Omnivorous
50.		Turdoides striata	Jungle Babbler	ГС	R	Ra	Omnivorous
51.		Abroscopus superciliaris	Yellow-bellied Warbler	ГС	R	UC	Insectivorous
52.		Cercomela fusca	Brown Rock Chat	LC	R	С	Insectivorous
53.		Prinia socialis	Ashy Prinia	ГС	Я	VC	Insectivorous/ Nectivorous
54.		Prinia inornata	Plain Prinia	ГС	Я	C	Insectivorous / Nectivorous
55.		Orthotomus sutorius	Common Tailorbird	ГС	Я	C	Insectivorous/ Nectivorous
56.		Dicaeum erythorhynchos	Pale – billed Flowerpecker	СС	R	VC	Nectivorous
57.	Nectariniidae	Cinnyris asiaticus	Purple Sunbird	CC	R	VC	Nectivorous
58.	Oriolidae	Oriolus oriolus	Eurasian Golden Oriole	ГC	PV	VC	Omnivorous
59.	Paridae	Parus major	Great Tit	ГC	Я	UC	Omnivorous
60.	Phalacrocoracidae	Phalacrocorax niger	Little Cormorant	ΓC	WV	U	Carnivorous
61.	Phasianidae	Francolinus pondicerianus	Grey Francolin	LC	R	Ra	Omnivorous
62.		Coturnix coturnix	Common Quail	ГC	WV	Ra	Omnivorous

288

Priyanka Shivhare, Niket Mishra and Devendra Singh

S.No.	Family	Scientific Name	Common English Name	IUCN status	Residential status	Relative abundance	Feeding habits
63.		Pavo cristatus	Indian Peafowl	LC	Я	Ra	Omnivorous
64.	Picidae	Dendrocopos mahrattensis	Yellow-crowned Woodpecker	LC	R	UC	Insectivorous
65.	Ploceidae	Passer domesticus	House Sparrow	LC	R	VC	Granivorous
66.		Ploceus philippinus	Baya Weaver	LC	R	nc	Omnivorous
67.		Euodice malabarica	Indian Silverbill	LC	R	С	Omnivorous
68.	Psittacidae	Psittacula cyanocephala	Plum-headed Parakeet	LC	R	С	Frugivorous
69.		Psittacula krameri	Rose-ringed Parakeet	LC	R	С	Frugivorous
70.	Pycnonotidae	Pycnonotus cafer	Red-vented Bulbul	LC	R	VC	Frugivorous
71.	Recurvirostridae	Himantopus himantopus	Black-winged stilt	ГС	Я	C	Omnivorous
72.	Strigidae	Bubo bubo	Eurasian Eagle Owl	LC	R	Ra	Carnivorous
73.		Athene noctua	Spotted Owlet	LC	R	Ra	Carnivorous
74.	Sturnidae	Acridotheres tristis	Common Myna	LC	R	VC	Granivorous
75.		Acridotheres ginginianus	Bank Myna	LC	R	Ra	Granivorous
76.		Sturnus pagodarum	Brahminy Starling	LC	R	С	Granivorous
77.	Upupidae	Upupa epops	Common Hoopoe	LC	R	UC	Insectivorous

Studies on avian diversity of Shri Krishna University campus, Chhatarpur, Madhya Pradesh, India

C-Common; CE - Critically Endangered; E- Endangered; LC-Least Concerned; NE- Not Evaluated; NT-Near Threatened; R- Resident; Ra-Rare; S.no.-Species Number; UC-Uncommon, VU-Vulnerable; Wv-Winter visitor

of such studies from university campuses. Therefore, attempts were made to create a checklist of the campus' bird species as well as perform this study on the avian diversity of the Shri Krishna University campus in Chhatarpur.

Material and Methods

Study area

At NH 86 Sagar road Chhatarpur MP, Shri Krishna University is located in a pleasant, green environment far from the crowded, polluted metropolis. Campus is fully surrounded by forest area. The area is bounded by latitudes of 24.8372° N and longitudes of 79.5214° E. Shri Krishna University have more than 100 acres land area. It is located 8 km away from the main city Chhatarpur. Chhatarpur is a city in central India's Madhya Pradesh state. It is located 19 kilometres to the east of the Dhasan River (a tributary of the Betwa River) in a region of low, scattered hills. The city functions as a major crossroads and a centre for the trade of agricultural products and textile materials. Between the Dhasan and Ken rivers, a rich plain surrounds the area, and scattered hills covered with trees rise to elevations of roughly 1,500 feet (450 metres) towards the south. The main crops are rice, sorghum, wheat, barley and legumes.

The study was conducted from February 2022 to July 2022 during a 06-months period. Walking around the campus allowed us the direct count approach of recording the bird species. The birds were seen in the morning between 7:00 and 10:00 AM and in the evening between 3:30 and 6:00 PM, when they were most active^{2,14}. The 16x52 Nikon binoculars were used for all

Priyanka Shivhare, Niket Mishra and Devendra Singh

sightings and observations. The feeding habits of various bird species and the habitats in which they might be found were also studied during the field investigation. On the basis of their preferred forms of food, the birds were divided into several groups, including frugivores, carnivores, insectivores, graminivores, omnivores, and nectarivores. The local and global status were compared using the International Union for the Conservation of Nature (IUCN) classification system. The terminology for birds was standard⁶. Using the following formula, Families' relative diversity (RDi) was calculated.¹⁷

$$RDi = \frac{Number \ of \ bird \ species \ in \ a \ family}{Total \ number \ of \ species} \times 100$$

Results and Discussion

According to the study, there were 77 different bird species in the study area, spread between 35 different bird families (Table-1). Observations made by other workers in the field were compared. In their study, they observed 62 species of birds from 11 orders and 38 families between January 2013 and December 2014 in and around the Laxminarayan Institute of Technology campus in Nagpur, Central India³. Others identified 61 bird species across 15 orders and 31 families on the BUAT campus, which is roughly 383.64 hectares¹⁵. With 370 species, India's largest bird family is the Muscicapidae¹⁰. The results of the current study showed that the avifauna in this campus was dominated by the Muscicapidae family (10 species). The study also revealed that there are 20 families with only one species in each family (Fig. 2).

The most diverse families (10 species, RDi= 12.99)

Fig. 1 : Family wise numbers of avian species in SKU campus

S. No.	Family	Number of bird species	RDi	S. No.	Family	Number of bird species	RDi
1	Accipitridae	6	7.79	19	Laniidae	3	3.90
2	Alaudidae	2	2.60	20	Meropidae	1	1.30
3	Alcedinidae	3	3.90	21	Motacillidae	3	3.90
4	Apodidae	1	1.30	22	Muscicapidae	10	12.99
5	Ardeidae	6	7.79	23	Nectariniidae	1	1.30
6	Bucerotidae	1	1.30	24	Oriolidae	1	1.30
7	Vangidae	1	1.30	25	Paridae	1	1.30
8	Campephagidae	1	1.30	26	Phalacrocoracidae	1	1.30
9	Capitonidae	1	1.30	27	Phasianidae	3	3.90
10	Caprimulgidae	1	1.30	28	Picidae	1	1.30
11	Charadriidae	1	1.30	29	Ploceidae	3	3.90
12	Columbidae	4	5.19	30	Psittacidae	2	2.60
13	Coraciidae	1	1.30	31	Pycnonotidae	1	1.30
14	Corvidae	4	5.19	32	Recurvirostridae	1	1.30
15	Cuculidae	3	3.90	33	Strigidae	2	2.60
16	Dicruridae	1	1.30	34	Sturnidae	3	3.90
17	Hirundinidae	1	1.30	35	Upupidae	1	1.30
18	Aegithinidae	1	1.30				

TABLE-2. Relative diversity (RDi) of various avian families at SKU campus

Fig. 2 : IUCN and Residential status of bird species

were Muscicapidae, followed by Accipitridae and Ardeidae (6 species each, RDi= 7.79), Columbidae and Corvidae (4 species each, RDi= 5.19), Alcedinidae, Cuculidae, Laniidae, Motacillidae, Phasianidae, Ploceidae and Sturnidae (3 species each, RDi= 3.90), Alaudidae, Psittacidae and Strigidae (2 species each, RDi= 2.60). On the other hand there are 20 families whose RDi value is 1.30 (Table-2). Similarly other workers observed in their study that Muscicapidae were the most diverse family (11 species, RDi= 7.91) in eastern Uttar Pradesh²⁰.

Out of 77 species, 68 were found to be residents, According to a study of the residential status data, while the remaining 9 species demonstrated passage visitor (5 species) and winter visitor (4 species). Birds' residential status revealed variations in their relative abundance (Figs. 3 & 4). Further investigation of relative abundance revealed that 36% species were classified as common, 26% species as uncommon, 21% species as vulnerable, and 17% species as rare.

The study of Bird feeding behaviour is crucial for comprehending the intricate structure of the ecosystem and for providing details on each type of habitat therein¹. The main determinant of the spatiotemporal distribution and relative abundance of birds in a given habitat is the quality and amount of food available¹¹. Seven main feeding guilds were found to be present in the research area with

regard to the foraging behaviours of birds (Fig. 5). The majority of bird species in campus were Carnivorous (31%). Many insectivorous species found in the research area are important biocontrol agents for pests in agriculture, horticulture and forestry¹⁶.

There are several Bird species in the research

Fig. 3 : Relative abundance of bird species found in SKU campus

Fig.4 : Feeding Guild pattern of avian species in SKU campus

region that the IUCN has classed as being in various threat categories, as has been discovered⁹. According to the result one species (*Neophron percnopterus*) was found in endangered species, one species (*Aquila rapax*) found in vulnerable species category (Fig. 3). Both species belong to the Accipitridae family. Rests of the species are categorized as least concerned category in IUCN list⁹. The IUCN has not yet assessed one species, namely *Mesophoyx intermedia*.

Conclusion

According to the study, the University campus's geographic position and habitat structure are responsible for the birds' wide diversity. The region appears to offer a variety of habitats for resident birds as well as a route for migratory birds. In order to sustain the diversity and ecological balance of the bird population, it is necessary to protect the habitat structure and variety found on university campuses. In general, urbanization reduces species variety, with only a few species being more common while others are rare, but the SKU campus is still relatively undeveloped and supports a wide range of bird species. In order to preserve ecological balance and avian diversity, this study emphasises the importance of keeping open or greener area on college campuses and in neighbouring communities. This research represents the first attempt of its sort to compile a thorough database of the birds observed at the Shri Krishna University campus.

References

- Azman MN, Latip NS, Sah MS, Shafie NJ. Avian Diversity and Feeding Guilds in a Secondary Forest, an Oil Palm Plantation and a Paddy Field in Riparian Areas of the Kerian River Basin, Perak, Malaysia. *Tropical life sciences research*. 2011; 22(2): 45–64.
- 2. Cunningham MA, Johnson DH, Svingen DN. Estimates of Breeding Bird Populations in the Sheyenne National Grassland, North Dakota. *The Prairie Naturalist*. 2006; **38**(1): 50–67.
- Dapke S, Didolkar R, Koushik S. Studies on diversity and abundance of avifauna in and around Laxminarayan Institute of Technology campus, Nagpur, Central India. *Journal of Entomology and Zoology Studies*. 2015; 3(5): 141-146

Priyanka Shivhare, Niket Mishra and Devendra Singh

- 4. Dhindsa MS and Saini HK. Agricultural ornithology: an Indian perspective. *Journal of Bioscience*. 1994; **19**(4): 391-402. doi:https://doi.org/10.1007/BF02703176
- 5. Edison S, DP, Abragam DA, Vijila S. Terrestrial avifauna of St. John's College campus, Tirunelveli District, Tamilnadu, India. *International Journal of Advanced Research*. 2016; **4**(1): 390-395.
- 6. Grimmett R, Inskipp C, Inskipp T. Birds of the Indian Subcontinent. India. Oxford University Press. 2011.
- 7. Harisha MN, Hosetti BB. Diversity and distribution of avifauna of Lakkavalli range forest, Bhadra Wildlife Sanctuary,Western Ghat, India. *Ecoprint*. 2009; **16**:21-27.
- 8. Hossain A, Aditya G. Avian Diversity in Agricultural Landscape: Records from Burdwan, West Bengal, India. *Proceedings of Zoological Society*. 2014; **69**(1): 38-51. https://doi.org/10.1007/s12595-014-0118-3.
- 9. IUCN (International Union for Conservation of Nature). 2021. https://www.iucnredlist.org/Accessed on 27 March 2021.
- 10. Manakadan R, Pittie A. Standardised common and scientific names of the birds of the Indian Subcontinent. *Buceros*. 2001; **6**:1-37.
- 11. Mukhopadhyay S, Mazumdar S. Avifaunal Diversity of Bibhutibhushan Wildlife Sanctuary, West Bengal, India. *World Scientific News*. 2017; **71**: 150-167.
- 12. Mukhopadhyay S, Mazumdar S. Habitat-wise composition and foraging guilds of avian community in a suburban landscape of lower Gangetic plains, West Bengal, India. *Biologia*. 2019; **74**: 1001-1010. https://doi.org/10.2478/s11756-019-00226-x.
- 13. Sekercioglu CH. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. *J. Ornithol.* 2012; **153**(Suppl 1): S153–S161.
- 14. Simons TR, Shriner SA, Farnsworth GL. Comparison of breeding bird and vegetation communities in primary and secondary forests of Great Smoky Mountains National Park. *Biological Conservation*. 2006; **129**: 302–311.
- Singh K, Maheshwari A, Dwivedi SV. Studies on avian diversity of Banda University of agriculture and technology campus, Banda, Uttar pradesh, India. *Int J Avian & Wildlife Biol.* 2018; 3(2):177 180. DOI: 10.15406/ ijawb.2018.03.00082.
- 16. Thakur ML, Mattu VK, Lal H. Avifauna of Arki Hills, Solan (Himachal Pradesh), India. *Indian Birds*. 2010; **5**:162-166.
- 17. Torre-Cuadros MDLAL, Herrando-Perez S, Young KR. Diversity and structure patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. *Biodiversity and Conservation*. 2007; **16**:2965-2988.
- 18. Veech JA, Small MF, Baccus JT. The effect of habitat on the range expansion of a native and an introduced bird species. *J. Biogeogr.* 2011; **38**: 69–77.
- 19. Whelan CJ, Wenny DG, Marquis RJ. Ecosystem services provided by birds. *Ann. N. Y. Acad. Sci.* 2008; **1134**: 25-60.
- 20. Yashmita-Ulman and Singh M. Bird composition, diversity and foraging guilds in agricultural landscapes: a case study from eastern Uttar Pradesh, India. *Journal of Threatened Taxa*. 2021; **13**(8): 19011-19028.